

Transformation!

David Bamford

- 1. Several 'winners' have appeared:
- ✓ Sea-bed Nodes (OBN)
- ✓ Fibre Optics
- ✓ Non-Seismic Geophysics:
 - ≻ Full Tensor Gravimetry (FTG)
 - Controlled Source Electro-magnetics (CSEM)
- 2. Critical Questions:
 - > Which work in which geological setting?
 - ≻ How to integrate them into the E&P work process?

- 1. Several 'winners' have appeared:
- ✓ Sea-bed Nodes (OBN)
- ✓ Fibre Optics
- ✓ Non-Seismic Geophysics:
 - ≻ Full Tensor Gravimetry (FTG)
 - Controlled Source Electro-magnetics (CSEM)
- 2. Critical Questions:
 - > Which work in which geological setting?
 - > How to integrate them into the E&P work process?

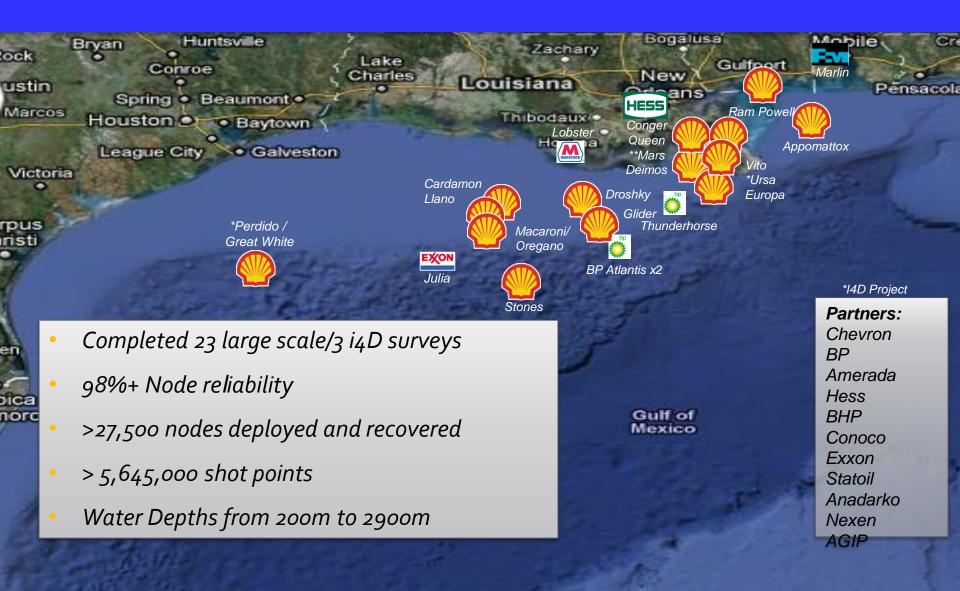
OBN - Sea-bed Nodes

CRITICAL POINT:

- ✓ Use of sea-bed Cables and/or Nodes has been fraught with difficulties, and drove one or more companies out of business (RXT for example).
- ✓ These operational difficulties now seem to have been solved.
 KEY DELIVERABLES:
- Deployment on the sea-bed allows 4-component recording, opening the way to utilisation of both P and S waves.
- > This improves the chances of successful fluid prediction, *and*
- Brings in some robust rock physics/geomechanics.....fracture density, fracture orientation, 'brittleness', 'fraccability' etc

Z3000 Nodal System

Proven Technology


26 deep water Z3000 surveys to date

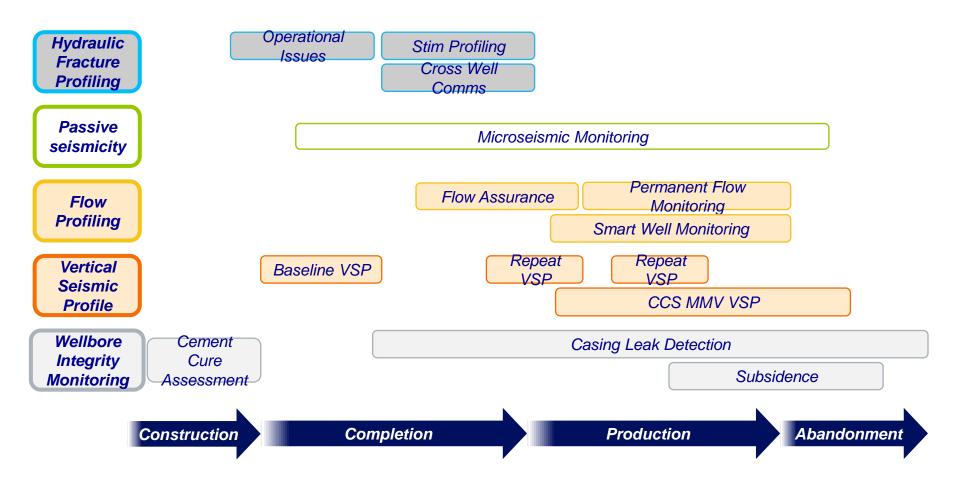
Average Survey Statistics

 Survey size: 	180km2
 Nodes/survey: 	1,178
• SPs / survey:	286,193
 Survey duration: 	78 days
• SPs/day (production):	3,676
As of January, 2015	

Project	Number of	Total Shot	Total Number	Water Depths	Average
	Node	Points	of Days	(metres)	Water Depth
Atlantis	1,628	458,098	168	2156	2156
Deimos	802	185,180	99	900	900
Shell	20	2,000	14	2D	2D
Micro Queen	454	197,581	76	800	800
Vooring	200	2,500	14	670 km 2D	670 km 2D
Mars	1,097	266,427	78	896	896
Cardamon	924	229,004	56	872	872
Ursa	937	290,117	78	1159	1159
Vito-11	937	314,617	84	1234	1234
Appomatox	1,065	311,208	70	2200	2200
Lobster	899	284,286	60	400	400
Hablano/Cardomom	1,654	433,671	118	1579	1579
Glider	1,089	184,162	71	1050	1050
Europa	1,090	167,862	64	1200	1200
Oregano 12	1,211	221,663	63	1000	1000
*Perdido	103	37,279	41	2400	2400
Brutus / Droshky	1,204	350,613	82	1000	1000
*URSA -1	134	32,030	42	1000	
*URSA-2	132	32,000	45	1160	
Ram Powell	1,210	260,050	70	500-1300	900
Conger	1,207	228,859	68	211-450	436
Perdido	1,500	315,877	101	2200-2400	2300
Marlin Dorado	1,125	183,009	91	750-1500	1125
Julia	1,500	365,724	119	1500	1500
Stones	1,286	291,343	87	2500-2900	2700
Atlantis	1,912	470,696	127	2156	2156
	*I4D Project				

The Nodes have it!

- 1. Several 'winners' have appeared:
- ✓ Sea-bed Nodes (OBN)
- ✓ Fibre Optics
- ✓ Non-Seismic Geophysics:
 - ≻ Full Tensor Gravimetry (FTG)
 - Controlled Source Electro-magnetics (CSEM)
- 2. Critical Questions:
 - > Which work in which geological setting?
 - > How to integrate them into the E&P work process?


Fibre Optics

CRITICAL POINT:

- ✓ Robust cables have now been developed that can be used to achieve 100% deployment in a well or ploughed into the seabed.
 KEY DELIVERABLES:
- > 24/7 recording of production acoustics, seismic sources.
- > Pin-pointing of petroleum or water flow into an active well.
- "Anytime" Vertical Seismic Profiles (VSPs)
- Permanent Reservoir Monitoring (PRM) down-hole and seabed in combination?

Integrated Well Surveillance Using DAS

One fibre ... multiple applications ... applied over the life of the well

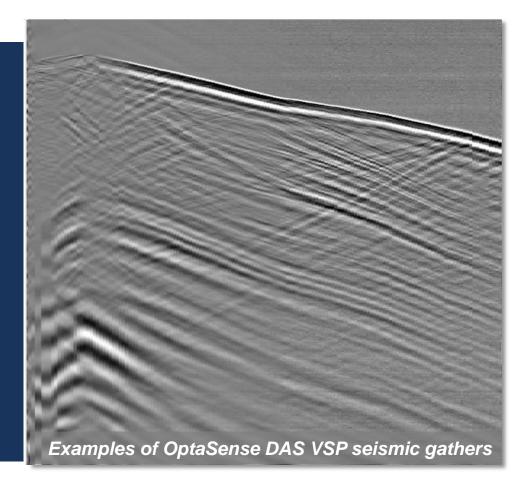
DAS-VSP™: Benefits and Examples

Providing unique advantages

Non-intrusive

 VSP in wells inaccessible to geophones

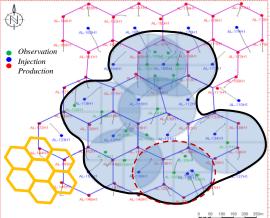
Permanent

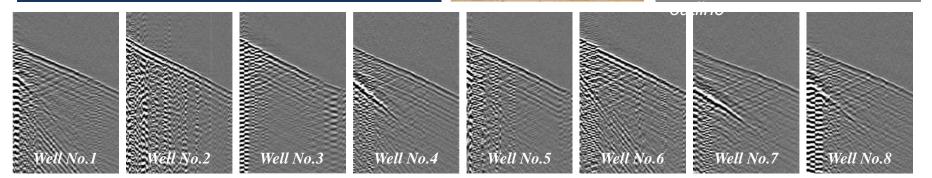

 Lower cost on-demand monitoring

Full vertical coverage

- Better imaging
- Faster acquisition

Retrofitable


- Deployable on tubing
- Synergies with in-well monitoring


Multi-well 4D DAS-VSP[™] acquisition Example from DAS-VSP 3D Baseline Survey

- Application
 - *–EOR (steam injection) surveillance*
- Measurement

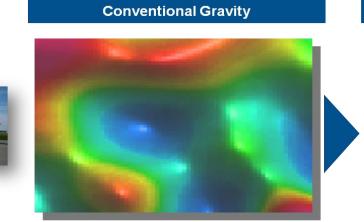
Baseline DAS coverage

Courtesy of PDO, Oman

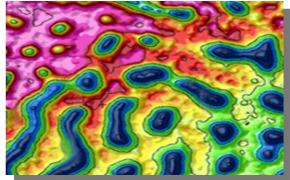
- 1. Several 'winners' have appeared:
- ✓ Sea-bed Nodes (OBN)
- ✓ Fibre Optics
- ✓ Non-Seismic Geophysics:
 - Full Tensor Gravimetry (FTG)
 - Controlled Source Electro-magnetics (CSEM)
- 2. Critical Questions:
 - > Which work in which geological setting?
 - > How to integrate them into the E&P work process?

FTG – Full Tensor Gravimetry

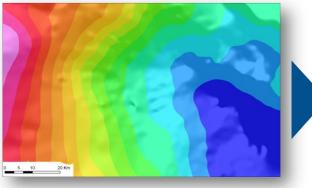
CRITICAL POINT:

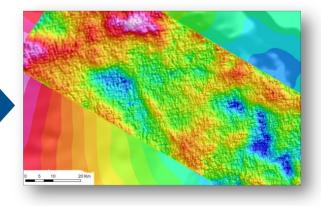

✓ Much higher 'signal-to-noise', much higher resolution than conventional gravity technology.

KEY DELIVERABLES:


- Huge survey areas (10's of thousands of square kilometres) can be covered quickly at a fraction of the cost of seismic , especially 3D seismic.
- Extremely useful for demonstrating basin structural architecture, revealing structural patterns from faulting.
- Extensive demonstrations of its usefulness in helping solve subsalt problems that are a challenge for seismic.

FTG provides increased resolution


GGI Is Game Changing



- 1. Several 'winners' have appeared:
- ✓ Sea-bed Nodes (OBN)
- ✓ Fibre Optics

✓ Non-Seismic Geophysics:

> Full Tensor Gravimetry (FTG)

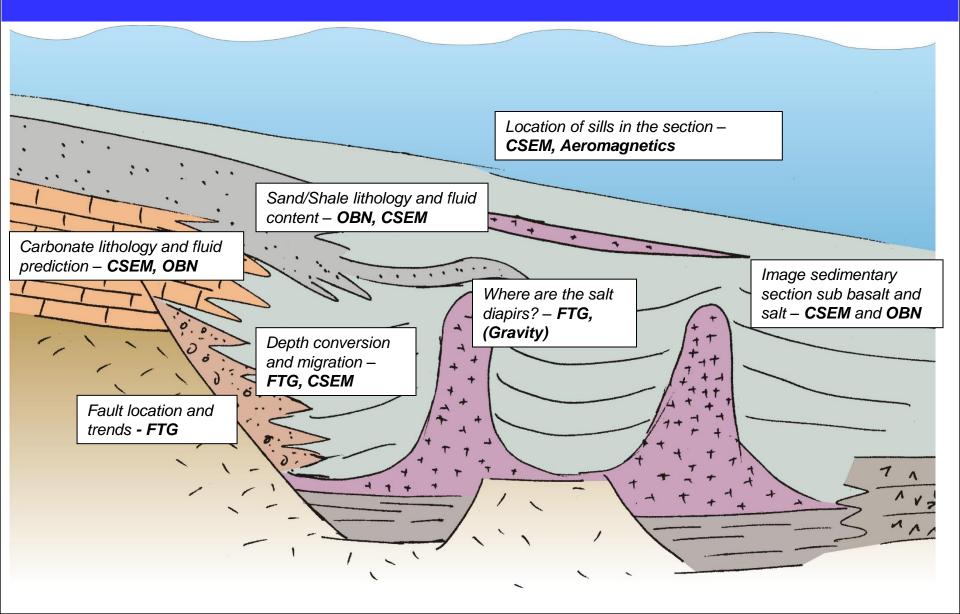
Controlled Source Electro-magnetics (CSEM)

2. Critical Questions:

> Which work in which geological setting?

> How to integrate them into the E&P work process?

03/2015 16


CSEM – Controlled Source Electro-magentics

CRITICAL POINT:

- ✓ Operational difficulties surmounted.
- ✓ Targets conductivity differences between oil, gas and water..
 KEY DELIVERABLES:
- > Not a "stand-alone" technique, especially for exploration.
- Power lies in integration once a 3D seismic-based interpretation is available.
- > EMGS's summary:
- CSEM = significant reduction of the main uncertainties and increase of Pe (chance of economic success)
- Needs to be adopted systematically
- Workflows must be adapted & Interpreters have to be trained

- 1. Several 'winners' have appeared:
- ✓ Sea-bed Nodes (OBN)
- ✓ Fibre Optics
- ✓ Non-Seismic Geophysics:
 - > Full Tensor Gravimetry (FTG)
 - Controlled Source Electro-magnetics (CSEM)
- 2. Critical Questions:
 - > Which work in which geological setting?
 - > How to integrate them into the E&P work process?

OFFSHORE PASSIVE MARGIN SETTING (Ireland, West of Shetlands, Norwegian Sea, Barents)

- 1. Several 'winners' have appeared:
- ✓ Sea-bed Nodes
- ✓ Fibre Optics
- ✓ Non-Seismic Geophysics:
 - ≻ Full Tensor Gravimetry (FTG)
 - Controlled Source Electro-magnetics (CSEM)

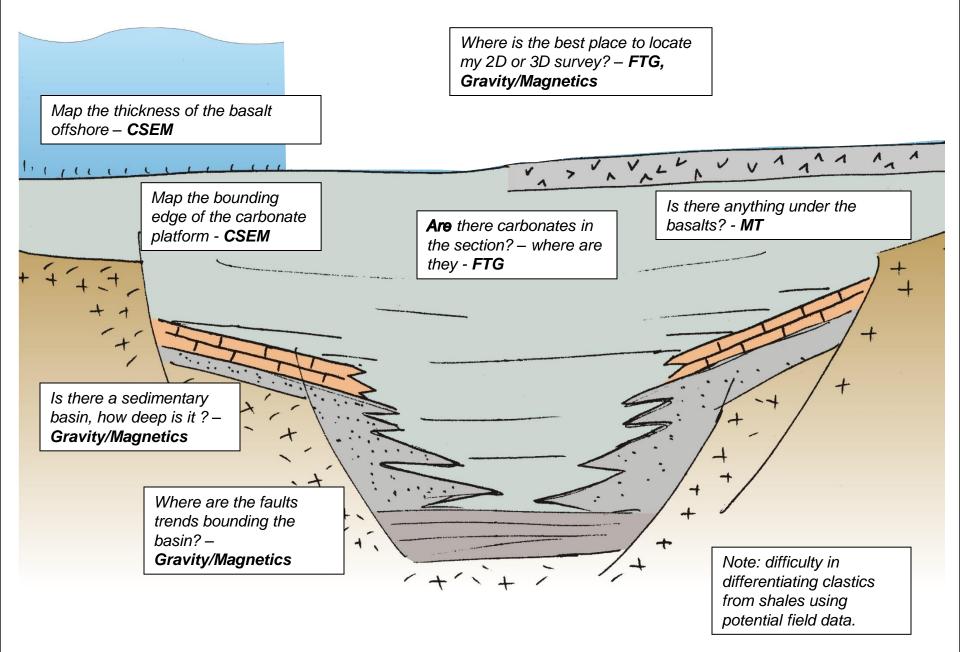
2. Critical Questions:

- > Which work in which geological setting?
- > How to integrate them into the E&P work process?

24/03/2015 20

How to Integrate and Interpret "Multi-Measurements?

- ? Modern workstations are designed for the interpretation of seismic data, increasingly 3D seismic.
- ? They, and typical work processes built around them, do not allow the easy integration of data say from 3D seismic, OBN, and CSEM, and subsequent interpretation.
- If you accept that use of multi-measurements can transform subsurface interpretations and
- Therefore increase economic success rates and reduce volumetric uncertainty *then*
- \succ It is essential that new systems appear which:
 - ✓ Allow a petro-technical professional to deliver a sophisticated interpretation from 3D seismic, *and then*
 - ✓ Invert into this 'model' parameters from OBN and/or CSEM and/or FTG etc.


- 1. Several 'winners' have appeared:
- ✓ Sea-bed Nodes.
- ✓ Fibre Optics
- ✓ Non-Seismic Geophysics:
 - ≻ Full Tensor Gravimetry (FTG)
 - Controlled Source Electro-magnetics (CSEM)
- 2. Critical Questions:
 - > Which work in which geological setting?
 - > How to integrate them into the E&P work process?

 24/03/2015
 22
 David Bamford, New Eyes Exploration Ltd

FAILED RIFT SETTING

Offshore

Onshore

